Automatic Learning in Multiple Model Adaptive Control
نویسندگان
چکیده
Control based on multiple models (MM) is an effective strategy to cope with structural and parametric uncertainty of systems with highly nonlinear dynamics. It relies on a set of local models describing different operating modes of the system. Therefore, the performance is strongly depends on the distribution of the models in the defined operating space. In this paper, the problem of on-line construction of local model set is considered. The necessary specifications of an autonomous learning method are stated, and a high-level supervisor is designed to add an appropriate model to the available model set. The proposed algorithm is evaluated in a simulated pH neutralization process which is a highly nonlinear plant and composed of both abrupt and large continuous changes. The preference of the multiple-model approach with learning ability on a conventional adaptive controller is studied.
منابع مشابه
Managed Pressure Drilling Using Integrated Process Control
Control of wellbore pressure during drilling operations has always been important in the oil industry as this can prevent the possibility of well blowout. The present research employs a combination of automatic process control and statistical process control for the first time for the identification, monitoring, and control of both random and special causes in drilling operations. To this end, ...
متن کاملAutomated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملMini/Micro-Grid Adaptive Voltage and Frequency Stability Enhancement Using Q-learning Mechanism
This paper develops an adaptive control method for controlling frequency and voltage of an islanded mini/micro grid (M/µG) using reinforcement learning method. Reinforcement learning (RL) is one of the branches of the machine learning, which is the main solution method of Markov decision process (MDPs). Among the several solution methods of RL, the Q-learning method is used for solving RL in th...
متن کاملPerfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control
In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...
متن کاملIntelligent Auto pilot Design for a Nonlinear Model of an Autonomous Helicopter by Adaptive Emotional Approach
There is a growing interest in the modeling and control of model helicopters using nonlinear dynamic models and nonlinear control. Application of a new intelligent control approach called Brain Emotional Learning Based Intelligent Controller (BELBIC) to design autopilot for an autonomous helicopter is addressed in this paper. This controller is applied to a nonlinear model of a helicopter. This...
متن کامل